Analysis of Coffee Bean Roasting Maturity Levels Using Color Feature Extraction

##plugins.themes.bootstrap3.article.main##

I Gede Pramana Ade Saputra Prastyadi Wibawa Rahayu I Made Dwi Ardiada

Abstract

This research aims to develop a digital image analysis system that can determine the level of maturity of roasted coffee beans, in terms of detecting roasted coffee beans that are suitable and not suitable for consumption and sold as quality coffee (special coffee) as stated in the coffee bean classification standards provided by SNI No. 01-2907-1999. This research aims to develop a digital image analysis system that can determine the level of maturity of roasted coffee beans in terms of color. The color feature extraction used in this research is the HSV (Hue Saturation Value) color space. This research began by collecting data in the form of 2D digital images of roasted coffee beans. The system developed in this research consists of two main stages, namely training and testing. The amount of coffee bean image data used was 90 images. The data used is in the form of images of coffee beans consisting of three levels, namely dark, light and medium. Classification uses the Naive Bayes algorithm. Based on the results of research on the analysis of coffee bean maturity levels, the highest training accuracy was 100% and the highest testing accuracy was 100%.

##plugins.themes.bootstrap3.article.details##

Section
Articles
References
Aditya Nugraha, D., & Sartika Wiguna, A. (2020). Seleksi Fitur Warna Citra Digital Biji Kopi Menggunakan Metode Principal Component Analysis Digital Image Selection of Coffee Seed Using Component Analysis Method. In Research: Journal of Computer (Vol. 3, Issue 1).
Asmara, R. A., & Heryanto, T. A. (2019). Klasifikasi Varietas Biji Kopi Arabika Menggunakan Ekstraksi Bentuk dan Tekstur Seminar Informatika Aplikatif. Seminar Informatika Aplikatif (SIAP).
Chozin Acyqar Ahjad Aziddin, Jangkung Raharjo, & Nur Ibrahim. (2022). Deteksi Kualitas Biji Kopi Menggunakan Pengolahan Citra Digital Dengan Metode Content Based Image Retrieval Dan Klasifikasi. E-Proceeding of Engineering, 8(6).
Farisi, A. A., Sibaroni, Y., & Faraby, S. Al. (2019). Sentiment analysis on hotel reviews using Multinomial Naïve Bayes classifier. Journal of Physics: Conference Series, 1192(1). https://doi.org/10.1088/1742-6596/1192/1/012024
Food and Agriculture Organization of United Nation (FAO). . (n.d.). http://faostat.fao.org
Heriana, Sukainah, A., & Wijaya, M. (2023). Pengaruh Suhu dan Waktu Penyangraian Terhadap Kadar Kafein dan Mutu Sensori Kopi Liberika (Coffea liberica) Bantaeng. PATANI (Pengembangan Teknologi Pertanian Dan Informatika)), 6(1), 1–10. https://doi.org/10.47767/patani.v6i1.442
Hoffmann J. (2014). The World Atlas of Coffee: From Beans to Brewing - Coffees Explored, Explained and Enjoyed. Mitchell Beazley.
Novita, E., Syarief, R., Noor, E., & Mulato, D. S. (2010). PENINGKATAN MUTU BIJI KOPI RAKYAT DENGAN PENGOLAHAN SEMI BASAH BERBASIS PRODUKSI BERSIH. JURNAL AGROTEKNOLOGI, 4(1).
Oktaviani Putri, F., & Cahya Wihandika, R. (2020). Analisis Sentimen pada Ulasan Pengguna MRT Jakarta Menggunakan Metode Neighbor-Weighted K-Nearest Neighbor dengan Seleksi Fitur Information Gain. Jurnal Pengembangan Teknologi Informasi Dan Ilmu Komputer, 4(7), 2195–2203. http://j-ptiik.ub.ac.id
Sabini, B. (2021). Perbandingan Metode Konversi Grayscale Menggunakan Metrik Kualitas Butteraugli. Jurnal Inovasi Informatika, 6(2), 38–54. https://doi.org/10.51170/jii.v6i2.189
Utami, M., & Erwin Dwika Putra. (2023). Deteksi Objek Kualitas Daun Sawi Menggunakan Metode HSV Color dan Color Blob. JUSIBI (Jurnal Sistem Informasi Dan Bisnis), 5(2), 85–93. https://doi.org/10.54650/jusibi.v5i2.518
Yolanda, K., Yusra, Y., & Fikry, M. (2023). Klasifikasi Sentimen Ulasan Aplikasi WhatsApp di Play Store Menggunakan Naive Bayes Classifier. J-INTECH, 11(1), 1–9. https://doi.org/10.32664/j-intech.v11i1.867