Identification Of Signatures Using Convolutional Neural Network (CNN) Method
##plugins.themes.bootstrap3.article.main##
Abstract
This research aims to develop and evaluate a Convolutional Neural Network (CNN) model for signature identification. The CNN method is chosen for its capability to extract and analyze complex visual features from signature images. The data used in this study consists of a collection of signature images divided into training and testing sets. The proposed CNN model comprises several convolutional, pooling, and fully connected layers optimized for classification tasks. Evaluation results indicate that the CNN model achieves excellent performance with an accuracy of 0.97, demonstrating high accuracy and precision in signature recognition. With these results, CNN proves to be an effective and reliable method for signature identification, making a significant contribution to the field of biometric identity verification. These findings open opportunities for further applications in security and authentication systems requiring automatic signature recognition.
##plugins.themes.bootstrap3.article.details##
Husna, Lenny, and Sestri Novia Rizki. 2023. “Pemanfaatan JST Pengenalan Keaslian Pola Tanda Tangan Untuk Pencegahan Tindakan Pemalsuan Tanda Tangan.” Jurnal Teknik Informa Tika Unika 08(01):2657–1501.
Issue, Volume, Copyright Lamlaj, Akibat Pemalsuan, and Tanda Tangan. 2018. “LamLaj.” 3(2):119–28.
Jannah, Raudlatul, Miftahul Walid, and Hoiriyah Hoiriyah. 2022. “Sistem Pengenalan Citra Dokumen Tanda Tangan Menggunakan Metode CNN (Convolutional Neural Network).” Energy - Jurnal Ilmiah Ilmu-Ilmu Teknik 12(2):1–8. doi: 10.51747/energy.v12i2.1116.
Kasim, Nanang, and Gibran Satya Nugraha. 2021. “Pengenalan Pola Tulisan Tangan Aksara Arab Menggunakan Metode Convolution Neural Network.” Jurnal Teknologi Informasi, Komputer, Dan Aplikasinya (JTIKA ) 3(1):85–95. doi: 10.29303/jtika.v3i1.136.
Lubis, Adi Utama Pandapotan. 2020. “Analisis Yuridis Pertanggungjawaban Notaris Terhadap Pemalsuan Tanda Tangan Oleh Penghadap Dalam Akta Autentik.” Jurnal SOMASI (Sosial Humaniora Komunikasi) 1(1):116–28. doi: 10.53695/js.v1i1.36.
Lubis, Juanda Hakim. 2018. “Analisa Tanda Tangan Digital Menggunakan Hebbian Learning Dan Support Vector Machine.” JTIK (Jurnal Teknik Informatika Kaputama) 2(2):1–8. doi: 10.59697/jtik.v2i2.654.
Mawaddah, Udkhiati, Hendrawan Armanto, and Endang Setyati. 2021. “Prediksi Karakteristik Personal Menggunakan Analisis Tanda Tangan Dengan Mengggunakan Metode Convolutional Neural Network (Cnn).” Antivirus : Jurnal Ilmiah Teknik Informatika 15(1):123–33. doi: 10.35457/antivirus.v15i1.1526.
Nugroho, Pulung Adi, Indah Fenriana, and Rudy Arijanto. 2020. “Implementasi Deep Learning Menggunakan Convolutional Neural Network (CNN) Pada Ekspresi Manusia.” Algor 2(1):12–21.
Rukmana, Rubiyanti, Nandita Dwi Savitri, and Yuliana Adelvina Padha. 2021. “Peran Notaris Dalam Transaksi Perdagangan Berbasis Elektronik.” Jurnal Komunikasi Hukum (JKH) 7(1):495. doi: 10.23887/jkh.v7i1.32324.
Saputra, M. Billy, S. H. Mh, Program Studi, Magister Kenotariatan, Program Pascasarjana, and Universitas Jayabaya. 2022. “Pertanggung Jawaban Ppat Sehubungan Dengan.” 1(11):2431–44.
Sari, Amy Kartika, and Koko Wahyu Prasetyo. 2019. “Sistem Informasi Administrasi Perkara Hukum Perdata Pada Kantor Advokat (Studi Kasus : Buyung & Partners).” J-Intech 7(02):115–19. doi: 10.32664/j-intech.v7i02.437.
Simanjuntak, Sondang Irene, and Mohamad Fajri Mekka Putra. 2022. “Akibat Hukum Terhadap Pemalsuan Tanda Tangan Yang Dilakukan Karyawan Notaris Tanpa Sepengetahuan Notaris Yang Mempekerjakannya.” Jurnal Komunikasi Hukum (JKH) 8(1):67–80. doi: 10.23887/jkh.v8i1.43874.
Suartika E. P, I Wayan, Wijaya Arya Yudhi, Soelaiman Rully. 2016. “Klasifikasi Citra Menggunakan Convolutional Neural Network (CNN) Pada Caltech 101.” Jurnal Teknik ITS 5(1):76.
Turmudzi, Muhammad, and Endang Setyati. 2021. “Identifikasi Penulis Berdasarkan Pola Tulisan Tangan Menggunakan Convolutional Autoencoder Dan KNN.” JEECOM Journal of Electrical Engineering and Computer 3(1):8–13. doi: 10.33650/jeecom.v3i1.1548.
Umam, Chaerul, and Lekso Budi Handoko. 2020. “Convolutional Neural Network (CNN) Untuk Identifkasi Karakter Hiragana.” Prosiding Seminar Nasional Lppm Ump 0(0):527–33.
Wita, Deviana Sely, and Dewi Yanti Liliana. 2022. “Klasifikasi Identitas Dengan Citra Telapak Tangan Menggunakan Convolutional Neural Network (CNN).” Jurnal Rekayasa Teknologi Informasi (JURTI) 6(1):1. doi: 10.30872/jurti.v6i1.7100.