Comparison of the Naïve Bayes Method and Support Vector Machine on Twitter Sentiment Analysis

##plugins.themes.bootstrap3.article.main##

Mujaddid Izzul Fikri Trifebi Shina Sabrila Yufis Azhar

Abstract

Twitter is one of the social media that is widely used by the public as a communication media and obtain information. Through this social media, users can submit various opinions or comments on an issue. The opinions and comments that users submit through the tweets they send can be used for sentiment analysis. Therefore, in this study sentiment analysis of tweets related to the University of Muhammadiyah Malang (UMM) was carried out to determine public opinion about this campus. The analysis was carried out by classifying tweets that contain people’s sentiments regarding UMM. The classification method used in this study is Naïve Bayes and Support Vector Machine (SVM) by weighting the term using TF-IDF. The result of the two methods shows that Naïve Bayes gets better accuracy than SVM with an accuracy of 73,65%

##plugins.themes.bootstrap3.article.details##

Section
Articles
References
[1] A. Fathan Hidayatullah and A. Sn, “ISSN: 1979-2328 UPN "Veteran,” Semin. Nas. Inform., vol. 2014, no. semnasIF, pp. 115–122, 2014.
[2] A. Go, R. Bhayani, and L. Huang, “Twitter Sentiment Classification using Distant Supervision,” Processing, vol., pp. 1–6, 2009.
[3] H. Parveen and S. Pandey, “Sentiment analysis on Twitter Data-set using Naive Bayes algorithm,” Proc. 2016 2nd Int. Conf. Appl. Theor. Comput. Commun. Technol. iCATccT 2016, pp. 416–419, 2017, doi: 10.1109/ICATCCT.2016.7912034.
[4] S. Fanissa, M. A. Fauzi, and S. Adinugroho, “Analisis Sentimen Pariwisata di Kota Malang Menggunakan Metode Naive Bayes dan Seleksi Fitur Query Expansion Ranking | Jurnal Pengembangan Teknologi Informasi dan Ilmu Komputer,” J. Pengemb. Teknol. Inf. dan Ilmu Komput., vol. 2, no. 8, pp. 2766–2770, 2018.
[5] V. Chandani, F. I. Komputer, and U. D. Nuswantoro, “Komparasi Algoritma Klasifikasi Machine Learning Dan Feature Selection pada Analisis Sentimen Review Film,” J. Intell. Syst., vol. 1, no. 1, pp. 56–60, 2015.
[6] W. E. Nurjanah, R. S. Perdana, and M. A. Fauzi, “Analisis Sentimen Terhadap Tayangan Televisi Berdasarkan Opini Masyarakat pada Media Sosial Twitter menggunakan Metode K-Nearest Neighbor dan Pembobotan Jumlah Retweet,” J. Pengemb. Teknol. Inf. dan Ilmu Komput. Univ. Brawijaya, vol. 1, no. 12, pp. 1750–1757, 2017, doi: 10.1074/jbc.M209498200.
[7] S. A. Alasadi and W. S. Bhaya, “Review of data preprocessing techniques in data mining,” J. Eng. Appl. Sci., vol. 12, no. 16, pp. 4102–4107, 2017, doi: 10.3923/jeasci.2017.4102.4107.
[8] B. K. Hananto, A. Pinandito, and A. P. Kharisma, “Penerapan Maximum TF-IDF Normalization Terhadap Metode KNN Untuk Klasifikasi Dataset Multiclass Panichella Pada Review Aplikasi Mobile,” vol. 2, no. 12, pp. 6812–6823, 2018.
[9] B. Olabenjo, “Applying Na ¨ ıve Bayes Classification to Google Play Apps Categorization.”
[10] A. Indriani and D. Nbc, “Klasifikasi Data Forum dengan menggunakan Metode Naïve Bayes Classifier,” pp. 5–10, 2014.
[11] Bustami, “Penerapan Algoritma Naive Bayes,” J. Inform., vol. 8, no. 1, pp. 884–898, 2014.
[12] S. Rana, “Comparative Analysis of Sentiment Orientation Using SVM and Naïve Bayes Techniques,” no. October, pp. 106–111, 2016.
[13] Y. K. S. Derick Iskandar, “Perbandingan Akurasi Klasifikasi Tingkat Kemiskinan,” Perbandingan Akurasi Klasifikasi Tingkat Kemiskin., vol. xxx, no. xxx, pp. 1–8, 2014.