Backpropagation to Predict the Number of International Tourists to Indonesia

##plugins.themes.bootstrap3.article.main##

Kevin Aringgi Salim Nur Nafi'iyah Siti Mujilahwati

Abstract

Developing areas that have tourism potential is an effort to increase sources of income for villagers. Areas that have tourist areas can be a vehicle that attracts the attention of the public, both domestically and abroad. Tourists who come can provide income for tourist areas or the community. Therefore, predicting the number of incoming tourists can be predicted based on data from previous years. The goal is to make predictions to improve infrastructure and all needs for tourists. The purpose of this study is to apply the Backpropagation method to predict the number of foreign tourist visits to Indonesia. The dataset used in this study is 6000 lines and is divided into 4800 lines of training data, and 1200 lines of test data. The dataset is taken from the bps website, with the input variables being month, year, country of origin, tourist entrance to Indonesia, and the output variable being the number of tourists. The model of Backpropagation is evaluated by calculating MAE, and the architecture built is 4-9-1, 4 input layer nodes, 9 hidden layer nodes, and 1 output layer node. The test results of the MAE value of the Backpropagation method in predicting the number of tourists to Indonesia are 0.247.

##plugins.themes.bootstrap3.article.details##

Section
Articles
References
[1] B. D. Setiawan, F. A. Bachtiar, and G. Ramadhona, “Prediksi Produktivitas Padi Menggunakan Jaringan Syaraf Tiruan Backpropagation,” J. Pengemb. Teknol. Inf. dan Ilmu Komput., 2018.
[2] N. Nafi’iyah, A. Ahmad Salaffudin1, and N. Q. Nawafilah, “Algoritma Backpropagation untuk Memprediksi Korban Bencana Alam,” SMATIKA J., 2020, doi: 10.32664/smatika.v9i02.400.
[3] Y. L. Saputra and E. Ekojono, “Sistem Informasi Prediksi Jumlah Wisatawan Pada Jawa Timur Park Group Kota Wisata Batu Menggunakan Metode Forecasting,” J. Inform. Polinema, vol. 2, no. 3, 2016, doi: 10.33795/jip.v2i3.70.
[4] F. R. Kustiawan and Hudori, “Forecasting Jumlah Wisatawan Di Taman Wisata Alam Kawah Ijen Dengan Metode Exponential Smoothing Berbantu Zaitun Time Series,” J. Pendidik. Mat. Mat., vol. I, no. 1, 2017.
[5] F. I. Yusuf and D. H. Anjasari, “Metode Triple Exponential Smoothing Holt Winter untuk peramalan Jumlah Wisatawan Nusantara Di Kabupaten Banyuwangi,” J. UJMC, vol. 4, 2018.
[6] A. B. Elfajar, B. D. Setiawan, and C. Dewi, “Peramalan Jumlah Kunjungan Wisatawan Kota Batu Menggunakan Metode Time Invariant Fuzzy Time Series,” J. Pengemb. Teknol. Inf. dan Ilmu Komput. Univ. Brawijaya, vol. 1, no. 2, 2017.
[7] A. Indrasetianingsih and I. Damayanti, “Prediksi Jumlah Kunjungan Wisatawan Mancanegara di Indonesia dengan Menggunakan Metode ARIMA Box-Jenkins dan Jaringan Syaraf Tiruan,” J Stat. J. Ilm. Teor. dan Apl. Stat., vol. 10, no. 2, 2018, doi: 10.36456/jstat.vol10.no2.a1219.
[8] E. Kurniawati and O. Yantri, “Pemodelan Jumlah Kunjungan Wisatawan Mancanegara Di Batam Dengan Menggunakan Arima Dan Regresi Time Series,” J. Dimens., vol. 7, no. 3, 2018, doi: 10.33373/dms.v7i3.1716.
[9] N. Syamsiah Oktaviani and I. Purwandani, “Penerapan Neural Network Untuk Peramalan Data Time Series Univariate Jumlah Wisatawan Mancanegara,” J. Mantik Penusa, vol. 3, no. 3, 2019.
[10] M. A. D. Chandrasa, E. Lesmana, and E. Hertini, “Peramalan Jumlah Kedatangan Wisatawan Mancanegara Ke Indonesia Dengan Metode Holt-Winters Dan Hubungannya Terhadap Pendapatan Devisa Pariwisata,” Teorema Teor. dan Ris. Mat., vol. 5, no. 2, 2020, doi: 10.25157/teorema.v5i2.3790.
[11] N. P. N. Hendayanti and M. Nurhidayati, “Perbandingan Metode Seasonal Autoregressive Integrated Moving Average (SARIMA) dengan Support Vector Regression (SVR) dalam Memprediksi Jumlah Kunjungan Wisatawan Mancanegara ke Bali,” J. Varian, vol. 3, no. 2, 2020, doi: 10.30812/varian.v3i2.668.
[12] M. Marbun, H. T. Sihotang, and M. A. Nababan, “Perancangan Sistem Peramalan Jumlah Wisatawan Asing,” J. Mantik Penusa, vol. 2, no. 1, 2018.