Application of the McCulloch-Pitts Method Using Python for Testing Pattern Recognition of AND Operators, OR Operators, XOR Operators in Logic Functions
##plugins.themes.bootstrap3.article.main##
Abstract
Artificial neural networks (ANNs) are a part of artificial intelligence that applies the concept of how the biological neural network in humans operates. The primary advantage of ANNs lies in their ability to recognize specific patterns, such as the pattern notation of logic functions tested in this study using the McCulloch-Pitts model. Testing the pattern recognition of logic functions, involving AND, OR, and XOR operators, entails input variables: values X1, X2, and other input values (Xn), as well as target values (t) that match the truth table forms of each logic function. The test results indicate the alignment of the testing process using the concept of artificial neural networks with the patterns of logic functions. The implementation of the test is carried out using the Python programming language, which can produce conformity in the pattern forms of logic functions. The testing process is conducted by determining input values for each variable used in the logic functions, inputting weights (W) for each input value, and setting a threshold value directly to obtain results that align the output with the target.
##plugins.themes.bootstrap3.article.details##
Arifin, M., Asfani, K., & Handayani, A. N. (2018). Aplikasi Jaringan Saraf Tiruan Metode Perceptron Pada Pengenalan Pola Notasi. Simetris: Jurnal Teknik Mesin, Elektro Dan Ilmu Komputer, 9(1), 77–86. https://doi.org/10.24176/simet.v9i1.1737
Ayu, F. (2019). Implementasi Jaringan Saraf Tiruan Untuk Menentukan Kelayakan Proposal Tugas Akhir. 3(2), 44–53.
Aziz, A. S., RF, B. R., & Kristianti, T. (2022). Model Neuron Mc Culloch-Pitts dalam Pengenalan Pola Logika Dasar. Jurnal JEECOM, 4(2), 51–56.
Bishop, C. M. (2006). Pattern Recognition and Machine Learning. In Springer.
Intan, I., Rismayani, Ghani, S. A. D., Nurdin, & Koswara, A. T. . (2021). Analisis Performansi Prakiraan Cuaca Menggunakan Algoritma Machine Learning. Jurnal Pekommas, 6(2), 1–8. https://doi.org/10.30818/jpkm.2021.2060221
Julpan, Nababan, E. B., & Zarlis, M. (2015). Analisis Fungsi Aktivasi Sigmoid Biner Dan Sigmoid Bipolar Dalam Algoritma Backpropagation Pada Prediksi Kemampuan Siswa. Jurnal Teknovasi, 02(1), 103–116.
Maryana, S., Qur’ania, A., & Putra, A. P. (2018). Identifikasi Pengenalan Karakter Plat Nomor Kendaraan Menggunakan Jaringan Syaraf Tiruan Berbasis Citra Digital. Komputasi: Jurnal Ilmiah Ilmu Komputer Dan Matematika, 15(1), 111–117. https://doi.org/10.33751/komputasi.v15i1.1266
Noprizal, & Candra, F. (2019). Aplikasi Pengenalan Plat Nomor Kendaraan Di Universitas Riau. Jurnal Fasilkom, 9(3), 47–52. https://doi.org/10.37859/jf.v9i3.1670
Roza, Y., Pernando, Y., Saragih, R. E., Verdian, I., & Kunci, K. (2023). Perancangan Aplikasi Manajemen Proyek Pada PT . Sintech Berkah Abadi Berbasis Web. J-INTECH (Journal of Information and Technology), 11(1), 167–176.
Sudarsono, A. (2016). Jaringan Syaraf Tiruan Untuk Memprediksi Laju Pertumbuhan Penduduk Menggunakan Metode Backpropagation. Jurnal Media Infotama, 12(1), 61–69.
Wahyono, T. (2018). Fundamental Of Python For Machine Learning (Dasar-Dasar Pemrograman Python Untuk Machine Learning dan Kecerdasan Buatan). Penerbit Gava Media.
Widodo, Y. B. (2019). Pengenalan Angka Tulisan Tangan Menggunakan Jaringan Syaraf Buatan. Jurnal Teknologi Informatika Dan Komputer, 5(1), 51–54. https://doi.org/10.37012/jtik.v5i1.221