Department Recommendation System Using Web Based Naive Bayes Gaussian Algorithm
##plugins.themes.bootstrap3.article.main##
Abstract
This study aims to develop a web-based department recommendation system using the Gaussian Naive Bayes algorithm to address the issue of student confusion in selecting majors at STIKI Malang. Limited career guidance and information pose challenges for high school graduates in making informed decisions about their suitable majors based on interests and potentials. In this research, training data from 107 active students and graduates are utilized to provide recommendations based on various attributes such as gender, current major, skills, hobbies, reasons for pursuing higher education, program selection motives, interest in mathematics, and interest in English. The Gaussian Naive Bayes method successfully classifies continuous data with an accuracy of 87,85%, effectively dealing with the uncertainty in major selection. It is hoped that this system will assist high school graduates in choosing appropriate majors, reducing major selection errors, and optimizing potential.
##plugins.themes.bootstrap3.article.details##
Artina, Nyimas. 2006. “Penerapan Analisis Kebutuhan Metode Use Case Metode.” Jural Ilmiah STMIK GI MDP Volume 2 N:1–6.
Ashari, Hamdhan, Deni Arifianto, Habibatul Azizah, and Al Faruq. 2020. “Perbandingan Kinerja Algoritma Multinomial Naïve Bayes (Mnb), Multivariate Bernoulli Dan Rocchio Algorithm Dalam Klasifikasi Konten Berita Hoax Berbahasa Indonesia Pada Media Sosial.” 1–12.
Hadi Priyono, Retno Sari and Tati Mardiana. 2022. “Klasifikasi Pemilihan Jurusan Sekolah Menengah Kejuruan Menggunakan Gradient Boosting Classifier.” JURNAL INFORMATIKA 9(2):131~139.
Ismai. 2020. “Perancangan Sistem Aplikasi Pemesanan Makanan Dan Minuman Pada Cafetaria NO Caffe Di TAnjung Balai Karimun Menggunakan Bahasa Pemrograman PHP Dan MySQL.” Jurnal Tikar 1(2):192–206.
Herdiansah, Arief. 2020. “Sistem Pendukung Keputusan Referensi Pemilihan Tujuan Jurusan Teknik Di Perguruan Tinggi Bagi Siswa Kelas Xii Ipa Mengunakan Metode Ahp.” MATRIK : Jurnal Manajemen, Teknik Informatika Dan Rekayasa Komputer 19(2):223–34. doi: 10.30812/matrik.v19i2.579.
Mujahidin, Syamsul, Bagus Prasetio, and Muchammad Chandra Cahyo Utomo. 2022. “Implementasi Analisis Sentimen Masyarakat Mengenai Kenaikan Harga BBM Pada Komentar YoutubeDengan Metode Gaussian Naïve Bayes.” Jurnal Vocational Teknik Elektronika Dan Informatika 10(3):17–24.
Nilam Ramadhania, Zainollah Effendy and Irwan Darmawan. 2022. "Penerapan Algoritma Naïve Bayes Classifier dan Fungsi Gaussian Untuk Penentuan Penjurusan Siswa Kelas X." SMARTICS Journal 8(1):14-21. doi: 10.21067/smartics.v8i1.6996